Conic Sections: All Formulas and Calculations

Introduction to Conic Sections

Conic sections are curves formed by intersecting a plane with a double cone, resulting in a circle, ellipse, parabola, or hyperbola. These shapes are fundamental in mathematics, physics, and engineering.

General Conic Equation:

\[ Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 \]

Discriminant: \( B^2 - 4AC \)

Circle

A circle is the set of points equidistant from a fixed point (center).

Standard Form:

\[ (x - h)^2 + (y - k)^2 = r^2 \]

Where: \( (h, k) \) is the center, \( r \) is the radius.

General Form:

\[ x^2 + y^2 + Dx + Ey + F = 0 \]

All Formulas:

Ellipse

An ellipse is the set of points where the sum of distances to two foci is constant.

Standard Form (Centered at Origin):

\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \quad (a > b, \text{horizontal major axis}) \]
\[ \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \quad (a > b, \text{vertical major axis}) \]

Standard Form (Centered at \( (h, k) \)):

\[ \frac{(x - h)^2}{a^2} + \frac{(y - k)^2}{b^2} = 1 \quad (\text{horizontal}) \]
\[ \frac{(x - h)^2}{b^2} + \frac{(y - k)^2}{a^2} = 1 \quad (\text{vertical}) \]

General Form:

\[ Ax^2 + Cy^2 + Dx + Ey + F = 0 \quad (A, C > 0, B^2 - 4AC < 0) \]

All Formulas:

Parabola

A parabola is the set of points equidistant from a focus and a directrix.

Standard Form (Vertex at Origin):

\[ y^2 = 4ax \quad (\text{opens right}) \]
\[ y^2 = -4ax \quad (\text{opens left}) \]
\[ x^2 = 4ay \quad (\text{opens up}) \]
\[ x^2 = -4ay \quad (\text{opens down}) \]

Standard Form (Vertex at \( (h, k) \)):

\[ (y - k)^2 = 4a(x - h) \quad (\text{horizontal axis}) \]
\[ (x - h)^2 = 4a(y - k) \quad (\text{vertical axis}) \]

General Form:

\[ Ax^2 + Dx + Ey + F = 0 \quad \text{or} \quad Cy^2 + Dx + Ey + F = 0 \quad (B^2 - 4AC = 0) \]

All Formulas:

Hyperbola

A hyperbola is the set of points where the absolute difference of distances to two foci is constant.

Standard Form (Centered at Origin):

\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad (\text{horizontal transverse axis}) \]
\[ \frac{y^2}{a^2} - \frac{x^2}{b^2} = 1 \quad (\text{vertical transverse axis}) \]

Standard Form (Centered at \( (h, k) \)):

\[ \frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1 \quad (\text{horizontal}) \]
\[ \frac{(y - k)^2}{a^2} - \frac{(x - h)^2}{b^2} = 1 \quad (\text{vertical}) \]

General Form:

\[ Ax^2 + Cy^2 + Dx + Ey + F = 0 \quad (B^2 - 4AC > 0) \]

All Formulas: